
Release 7.00

SDK
PC Card Software Development Kit

7.00

CardWare SDK for PnP OSs

APSoft

Page-ii PC Card Software Development Kit

Proprietary Notice and Disclaimer

Unless otherwise noted, this document and the information herein disclosed are proprietary to APSoft. Any
person, or entity to whom this document is furnished, or who otherwise has possession thereof, by acceptance
agrees that it will not be copied or reproduced in whole or in part, nor used in any manner except to meet the
purposes for which it was delivered.

The information in this document is subject to change without notice, and should not be considered as a
commitment by APSoft. Although APSoft will make every effort to inform users of substantive errors, APSoft
disclaims all liability for any loss, or damage resulting from the use of this document or any hardware or
software described herein, including without limitation contingent, special, or incidental liability.

Copyright © 2002 by APSoft. All rights reserved.
Issue date: 31 December 2003

CardWare, APSoft, and the APSoft logo are registered trademarks of APSoft.

All other products and brand names are trademarks and registered trademarks of their respective companies.

APSoft.
Sonnenstrasse 26b
85622 Feldkirchen
Germany

Tel: +49 (0) 89 900 479 0
Fax: +49 (0) 89 900 479 11
Internet: http://www.tssc.de

http://www.tssc.de/

APSoft

PC Card Software Development Kit Page iii

Table of Contents

Introduction ... 1
Installation of PCMCIA Drivers .. 3

PnP Device Installation Issues.. 3
What is a Plug & Play ID?... 4

Hardware Key for PCMCIA Cards .. 7
Device ID Generation Method... 7
Instance ID Generation ...8
Device Key .. 9

Loading Driver .. 11
Loading by PnP Manager.. 11

WinNT OS 11
Win9x OS 12

Static and Dynamic Loading of Driver... 12
WinNT OS 12
Win9x OS 13

Driver Operation ... 15
WinNT OSs... 15
Win9x OSs .. 20

Specific Problems under WinNT OS ... 23
Resource Allocation .. 23
Drive Letters Mounting / Unmounting.. 25
How WinNT OS Sees CardBus Adapters ... 25

Specific Procedures Illustrated in Samples ... 27
WinNT OS... 27
Win9x OS.. 29

CardWare 7.0 Card Services API ... 31
Bulk memory services 33

Native memory cards support API of CardWare 7.0............................. 35
Driver programming interface.. 35
Informational functions..36
CIS access functions... 38
Raw card access... 40
Card Erase support ... 41
Utility functions.. 43

APSoft

Page-iv PC Card Software Development Kit

This page is intentionally blank.

PC Card Software Development Kit Page 1

1 C H A P T E R

Introduction
Several Microsoft OSs provide a so-called Plug-n-Play support. In Plug-n-Play
OSs a dedicated driver supports every hardware device compatible with the
Microsoft PnP API. Therefore your own PC Card drivers for PnP OS must have
the same architecture.

There are two kinds of PnP OSs on the market:

• Microsoft Windows 95, Microsoft Windows 98 and Microsoft
Windows ME (named collectively Win9x in this manual).

• Microsoft Windows 2000 and Microsoft Windows XP (named
collectively WinNT in this manual).

All Microsoft PnP OSs provide a build-in support for 16-bit and CardBus cards
(however, Windows 95 and early versions of Windows 98 don’t support
CardBus cards). Such support includes detection of PC Card insertion and
removal, card identification and loading of an appropriate device driver.
Microsoft OSs are also shipped with drivers for certain types of PC Cards such
us ATA/ATAPI, but if you develop your own PC Card most likely you will
have to write a special driver.

Unfortunately, WinNT DDK documentation doesn’t contain an extensive
description for writing PCMCIA card drivers. This manual describes the
working mechanism of PnP subsystems in different PnP OSs, structure of
device drivers in a PnP environment, and specific problems related to PC Cards
support.

All PnP OSs provide similar support for PnP drivers. However, developers
should be aware of several differences in PC Card support from one OS to
another.

For example, all Win9x OSs provide Card Services APIs based on the PC Card
Standard released by the International Standardization Group PCMCIA. Despite
the fact, that Microsoft only supports a relatively old version of the PC Card
Standard, the Card Services API provides a rich set of functions for PC Card
support. WinNT OSs, however, don’t provide the Card Services API, and the
set of options for PC Card driver developers are minimal.

APSoft

Page-2 PC Card Software Development Kit

This page is intentionally blank

PC Card Software Development Kit Page 3

2 C H A P T E R

Installation of PCMCIA Drivers

PnP Device Installation Issues

When the user connects a new device to the bus, the driver of the bus detects
the new device, enumerates it, retrieves identification information, and passes
this information to the Plug & Play subsystem.Plug & Play devices normally
have the following identification information:

• Device and instance ID (device node name)
• Device capabilities
• One or more hardware IDs and zero or more compatible IDs

Note: Depending on the bus type, different enumerators are used to enumerate
a new device. Depending on enumerator, information about the device will be
stored in different branches of the registry:

\Enum\PCI for PCI and CardBus cards
\Enum\PCMCIA for 16-bit PCMCIA cards

The Windows’ Plug & Play subsystem gets identification information, then

• Searches for device ID matches in the set of available INFs
• Ranks the matched ID entries in the INFs according to signature, ID

match, and DriverVer date (in that order)
• Selects the best ID match – identifies the INF containing that ID
• Uses the ID entry in that INF to install the driver referenced in the

INF

Notes: Here is the difference between Windows 95/98/ME and Windows
2000/XP. First of all, Windows 95/98/ME uses a pre-built device INFs
database (DRVDATA.BIN and DRVIDX.BIN in C:\Windows\Inf subdirectory),
where as Windows 2000/XP uses individual pre-compiled INF files (PNF-files).
To change the pre-calculated rank of device IDs, both files (DRVDATA.BIN
and DRVIDX.BIN) should be deleted under Windows 95/98/ME. Secondly, in
the case that two or more INF files have equal device IDs, HW wizard under
Window 95/98/ME ranks INFs the following way:

APSoft

Page-4 PC Card Software Development Kit

• It tries to read DriverVer value from [Version] section of INF file
and takes a file with latest date

• If there is no DriverVer value or they are equal, HW Wizard takes
last modification date/time of the INF file

• If concurrent files have equal date/time, HW Wizard takes the one
that was written to directory earlier

In all OSs digitally signed drivers always have priority over digitally unsigned
drivers.

INF files for Windows 95/98/ME and Windows 2000/XP have slightly different
formats. Please refer to the help of corresponding DDK (‘Device Installation
and INF files’ chapter in 95 DDK, ‘Setup, Plug & Play and Power
Management’ chapter in 98/ME DDK, or ‘Device installation’ chapter in
2000/XP DDK) to find out correct format of INF file for each OS, and list of
rules according to which INF file should be written.

What is a Plug & Play ID?

A Plug & Play ID is a vendor-defined string used by Windows Plug & Play to
find a driver for a device. There are three kinds of Plug & Play IDs – ‘Hardware
IDs’, ‘Instance IDs’ and ‘Compatible IDs’. One device can have one ore more
Plug & Play IDs.

Hardware ID identifies type of device. Format of HW ID depends on the
enumerator (bus): <enumerator\<enumerator-specific-device-ID>. For example:
PCI\VEN_nnnn&DEV_nnnn&SUBSYS_nnnnnnnn&REV_nn or
PCMCIA\<card_manufacturer_ID>

You may find more information about HW ID in DDK help: ‘Device IDs’
chapter in Windows 95 DDK, or in Glossary of Windows 98/ME/2000/XP
DDK.

Instance ID Instance ID is a string that distinguishes a device from other
devices of the same type on a machine. An instance ID is persistent across
system boots.

Compatible ID has the same format as Hardware ID, but is typically more
generic than Hardware ID. Normally, Compatible ID is used by the Windows
Plug & Play subsystem for device identification when there is no Hardware ID
match. Device can expose zero or more Compatible IDs.

Example of Compatible ID: PCI\VEN_nnnn&DEV_nnnn.

APSoft

PC Card Software Development Kit Page 5

You may find more information about HW ID in DDK help: ‘Compatible IDs’
chapter in Windows 95 DDK, or in Glossary of Windows 98/ME/2000/XP
DDK.

APSoft

Page-6 PC Card Software Development Kit

This page is intentionally blank.

PC Card Software Development Kit Page 7

3 C H A P T E R

Hardware Key for PCMCIA Cards

Device ID Generation Method

DEVICE ID generation for 16-bit PCMCIA card with CIS

If a PCMCIA card has CIS, the PCMCIA bus driver generates the DEVICE ID
based on information of the CIS tuple with code 15h (CISTPL_VERS_1). The
format of DEVICE ID is:

PCMCIA\MANUFACTURER-PRODUCT-CRC(4), where:

MANUFACTURER Manufacturer name field from CISTPL_VERS_1
tuple.

PRODUCT Product name field from CISTPL_VERS_1 tuple.

CRC(4) 4-digits hexadecimal value, which represents CRC
code of CIS. In order to calculate CRC, Microsoft
OS parses first kilobyte of attribute memory. If
CISTPL_END is found inside, following tuples are
used for CRC calculation: CISTPL_DEVICE,
CISTPL_VERS_1, CISTPL_CONFIG,
CISTPL_CFTABLE_ENTRY, CISTPL_MANFID,
and CISTPL_END. During the calculation,
CISTPL_VERS_1 is abbreviated after two first
strings (Manufacturer name and Product name). All
other tuples in CIS are ignored.

The Value generated in such a way should be unique for any PCMCIA card.

DEVICE ID generation for 16-bit PCMCIA card without CIS

The PCMCIA driver doesn’t support cards without CIS, except for memory
cards. If the PCMCIA driver detects that the type of card is a FLASH or SRAM,
it generates the DEVICE ID. In most cases it is MTD-0000 for SRAM and
MTD-0002 for FLASH cards.

APSoft

Page-8 PC Card Software Development Kit

The algorithm of the memory cards recognition in the PCMCIA bus driver is
not complete, and some restrictions of this algorithm can cause problems with
device support. For example, if the card is recognized incorrectly, the resource
requirements list can either be empty or invalid, and the card driver will be
forced to build it at the receiving
IRP_MN_FILTER_RESOURCE_REQUIREMENTS (Win9x:
CONFIG_FILTER) request.

DEVICE ID generation for 32-bit CardBus card

The Device ID is generated based on values read from the PCI configuration
space as

 PCI\VEN_<VID>&DEV_<DID>&SUBSYS_<SID>&REV_<RID>,

Where

<VID> PCI Vendor ID (four digits, hex)

<DID> PCI Device ID (four digits, hex)

<SID> Subsystem Vendor and Device ID (eight digits, hex)

<RID> Revision number (two digits, hex)

Instance ID Generation

Instance ID generation for 16-bit PCMCIA card

The Instance ID is generated as a serial number of the socket. The numeration
of sockets is continuous. In case of multiple PCMCIA adapters

Adapter Socket Instance ID of inserted card

Socket 0 0
Adapter 1

Socket 1 1

Socket 0 2
Adapter 2

Socket 1 3

APSoft

PC Card Software Development Kit Page 9

Instance ID generation for 32-bit PCMCIA card

The Instance ID of PCI cards is a string describing location over PCI bus graph.
It includes the slot number of the card and all parent PCI-2-PCI and CardBus
bridges. Format of ID is

 <parent prefix string>&<device path>

<parent prefix string> Format is unknown. Prefix string is not used under
Win9x.

<dev slot><slotX><slot1><slot0>

<slot0> Slot number of bridge on PCI bus 0
(Bridge0)

<slot1> Slot number of bridge on secondary bus
of Bridge0

<device path>

<dev slot> Slot number of device

For example, in case of AGP video card (Bus 1 Dev 0 Func 0) located behind
AGP bridge with PCI device handle - Bus 0 Dev 1 Func 0 <device path> will
be 0008:

00 = DevNumcard * 8 + FuncNumcard= 0 * 8 + 0

08 = DevNumbridge * 8 + FuncNumbridge=1 * 8 + 0

Device Key

Device key of inserted card is placed into registry at following location:

Win2K/XP:
 HKLM\System\CurrentControlSet\Enum\<DEVICE ID>\<INSTANCE
ID>
Win9x:
 HKLM\Enum\<DEVICE ID>\<INSTANCE ID>.

APSoft

Page-10 PC Card Software Development Kit

This page is intentionally blank

PC Card Software Development Kit Page 11

4 C H A P T E R

Loading Driver

Loading by PnP Manager

The PCMCIA bus driver detects the inserted card , powers it on, and sends
notification to PnP Manager. The PnP Manager requests DEVICE ID and
INSTANCE ID of inserted card (see “Device ID Generation“ and ”Instance ID
Generation“), and tries to locate the record for this card in the registry. If the
record is present, the PnP manager loads the corresponding device driver, (if it
is not already loaded) and sends an Add Device (Win9x: New Device) request.
If the record is not present, the PnP manager starts Setup wizard (see “PnP
Device Installation Issues”)

The PCMCIA driver detects the insertion of the card and asks the PnP Manager
to send re-enumeration request to the socket device

 IoInvalidateDeviceRelations(SocketPDO, BusRelations)

The PnP Manager sends an IRP_MN_QUERY_DEVICE_RELATIONS
request to the socket PDO. The PCMCIA driver powers on the card, creates a
PDO device, generates a DEVICE ID and INSTANCE ID, and returns the
address of the PDO to the list of relations. The PnP Manager takes the name of
the card driver from the registry, loads the driver and calls the AddDevice
routine (see Win2K DKK “PnP and Power Management AddDevice Routine”)

Note: If PCMCIA driver fails to generate DEVICE ID, PDO will be not created
and request will be completed with status STATUS_DEVICE_NOT_READY.
Card is invisible for PnP subsystem.

The reason of the problem is the incorrect algorithm of CIS parsing inside of
the PCMCIA bus driver. The PCMCIA bus interface has a set of methods for
reading the attribute memory. According to the PC Card Standard, if CIS is not
presents in the attribute memory the interface will read the common memory.
Unfortunately, during CIS parsing the PCMCIA bus driver doesn’t validate the
data, so it can interpret any kind of data as CIS. Depending on the data read
from the common memory by the PCMCIA driver, it can cause:

• Return error from IRP_MN_QUERY_DEVICE_RELATIONS
(for example, if common memory contains a lot of zero bytes,

WinNT OS

APSoft

Page-12 PC Card Software Development Kit

PCMCIA interprets them as multiple CISTPL_NULL and returns
error)

• Generat invalid resource requirements list

The PCMCIA driver detects the insertion of the card, powers it on, generates
the DEVICE ID and INSTANCE ID, and then creates the device node to inform
the PnP Manager that a new device was found

 CM_Create_DevNode(&hNode, pszDeviceID, hSocket, 0)

The PnP Manager takes the name of the card driver from the registry, loads the
driver and sends the message PNP_NEW_DEVNODE to the driver.

Static and Dynamic Loading of Driver

In some cases the driver must be loaded dynamically, and sometimes at boot of
the system. For example, if driver supports both, PnP and Legacy cards, or
installs some types of system hooks.

Driver needs to be registered via Service Control Manager (see MSDN
“OpenSCManager”, “CreateService” and “ChangeServiceConfig”). Depending
on dwStartType parameter passed to CreateService, Windows NT will start your
driver at boot or system time, automatically. If start type is ‘manual’,
ControlService function must be called directly to start the service.

Note: If driver registers AddDevice routine (it is required for PnP drivers),
attempt to load driver with system; automatic and manual start will fail if

 HKLM\SYSTEM\CurrentControlSet\Services\<Name of service>\Enum
 Count REG_DWORD 0

‘Count’ value is zero. PnP manager increases this value when it detects
hardware associated by “Found new hardware Wizard” with your driver.

The driver can use the following algorithm to avoid the described problem
above:

1. DriverEntry: check Count value. If value is non-zero, register
AddDevice routine. If Count is zero, register the re-initialization
routine via IoRegisterDriverReinitialization call

2. When re-initialization routine is called, register AddDevice routine

Win9x OS

WinNT OS

APSoft

PC Card Software Development Kit Page 13

Dynamic load by ring 3 application

VxD driver can be loaded via ring 3 CreateFile call. In this operation mode the
driver will receive a SYS_DYNAMIC_DEVICE_INIT message from the
Virtual Machine Manager (VMM). After the last handle it will be closed by the
CloseHandle call, and Win9x will unload VxD.

 // Load VxD
LPCTSTR lpszVxDName = “\\\\.\\C:\\WINDOWS\\AVxDName.VxD”;
HANDLE hDevice =
 CreateFile(lpszVxdName,
 0, 0, NULL, 0,
 FILE_FLAG_DELETE_ON_CLOSE |
 FILE_FLAG_OVERLAPPED, NULL);
…
// Unload VxD
CloseHandle(hDevice);

Static load

VMM32 examines the registry branch
SYSTEM\CurrentControlSet\Services\VxD and enumerates all keys under this
branch. ("Enumerate" here refers to the enumeration of registry keys, not to
Plug and Play enumeration.) If it finds a value "StaticVxD=", it will load that
static VxD and execute its real mode initialization portion. For example:

SYSTEM\CurrentControlSet\Services\VxD\AvxDName
 Description=Driver description string
 Manufacturer=APSoft
 StaticVxD=AvxDName
 Start=0

Refer to Win95 DDK “Loading Base Drivers Specified in the Registry” chapter
for information on how to load VxD at system boot.

Win9x OS

APSoft

Page-14 PC Card Software Development Kit

This page is intentionally blank

PC Card Software Development Kit Page 15

5 C H A P T E R

Driver Operation

WinNT OSs

There are three types of PnP drivers: bus, function, and filter.

Bus driver

A bus driver services a bus controller, adapter, or bridge. Microsoft provides a
bus drivers for most common buses, such as PCI, PnpISA, SCSI, and USB.
Other bus drivers can be provided by IHVs, or OEMs. Bus drivers are required
drivers.

The primary responsibilities of a bus driver are to enumerate the devices on its
bus, and respond to certain PnP and power management IRPs. During
enumeration, a bus driver identifies the devices on its bus and creates device
objects for them. The method a bus driver uses to identify connected devices
depends on the particular bus.

A bus driver could be implemented as a driver/minidriver pair, the way a SCSI
port/miniport pair drives a SCSI HBA (host bus adapter).

A bus driver manages the slots on its bus; a function driver manages a device
that is attached to a bus. A bus driver is a function driver for its controller or
adapter.

Function

A function driver is the main driver for a device and provides the operational
interface for a device. A function driver typically handles read and writes to the
device and manages device power policy.

A function driver creates an FDO and attaches it to the device stack. If a device
is being used in raw mode it has no function driver, and all raw-mode I/O is
handled by the underlying bus driver (and optional bus filter drivers).

The function driver for a device can be implemented as a driver/minidriver pair,
such as a port/miniport pair or class/miniclass pair. In such driver pairs, one
driver is linked to the second driver (which is a DLL).

APSoft

Page-16 PC Card Software Development Kit

Filter

An intermediate driver that intercepts and processes I/O requests bound for an
underlying device. Such a driver calls IoAttachDevice at initialization to alias
its own device objects to those of the underlying device driver(s) or to each
intermediate driver layered above an underlying device driver.

Add device procedure

During AddDevice processing, driver should create new device object, which
will receive all PnP subsystem IRPs for corresponding device. All these IRPs
are described in Windows DDK (see “IRP_MN_xxx” topics), but the order of
IRPs received by the device is not documented. For PCMCIA cards the order is
as follows.

PnP
Manager

IRP_MN_QUERY_RESOURCE_REQUIREMENTS

IRP_MN_QUERY_ID (ID Type: BusQueryCompatibleIDs)

IRP_MN_QUERY_ID (ID Type: BusQueryHardwareIDs)

IRP_MN_QUERY_ID (ID Type: BusQueryInstanceID)

 IRP_MN_QUERY_DEVICE_TEXT (Type: DeviceTextLocationInformation)

IRP_MN_QUERY_DEVICE_TEXT (TextType: DeviceTextDescription)

IRP_MN_QUERY_CAPABILITIES

IRP_MN_QUERY_ID (ID Type: BusQueryDeviceID)

IRP_MN_QUERY_RESOURCES

IRP_MN_QUERY_PNP_DEVICE_STATE

IRP_MN_START_DEVICE

IRP_MN_FILTER_RESOURCE_REQUIREMENTS

IRP_MN_QUERY_INTERFACE

IRP_MN_QUERY_CAPABILITIES

IRP_MN_QUERY_BUS_INFORMATION

Figure 1: The list of IRP_MJ_PNP requests sent by PnP Manager to PDO
device of PCMCIA card

APSoft

PC Card Software Development Kit Page 17

IRPs sent to driver when device is added

IRP_MN_QUERY_ID (BusQueryDeviceID)

If a driver returns ID(s) in response to this IRP, it allocates a WCHAR structure
from paged pool to contain the ID(s). The PnP Manager frees the structure
when it is no longer needed.

The PnP Manager creates a sub-key in the CurrentControlSet\Enum key using
the returned string.

IRP_MN_QUERY_CAPABILITIES

The PnP Manager sends this IRP to get the capabilities of a device, such as
whether the device can be locked or ejected.

PnP Manager writes the value of LockSupported – SurpriseRemovalOK
members to the Capabilities value of the
\SYSTEM\CurrentControlSet\Enum\Pcmcia\<DEVICE ID>\<INSTANCE ID >
key.

IRP_MN_QUERY_DEVICE_TEXT (DeviceTextDescription)

Bus drivers are strongly encouraged to return device descriptions for their child
devices. This string is displayed in the "found new hardware" pop-up window if
no INF match is found for the device.

Bus drivers are also encouraged to return location information for their child
devices, but this information is optional.

If a bus driver returns information in response to this IRP, it allocates a NULL-
terminated Unicode string from paged memory. The PnP Manager frees the
string when it is no longer needed.

IRP_MN_QUERY_DEVICE_TEXT (DeviceTextLocationInformation)

PCMCIA driver returns the STATUS_NOT_SUPPORTED status when it
received this request.

IRP_MN_QUERY_ID (BusQueryInstanceID)

PCMCIA returns the instance number of card (“1”, “2”, ...).

APSoft

Page-18 PC Card Software Development Kit

IRP_MN_QUERY_ID (BusQueryHardwareIDs)

PCMCIA returns the same string as from IRP_MN_QUERY_ID
(BusQueryDeviceID).

IRP_MN_QUERY_ID (BusQueryCompatibleIDs)

PCMCIA can return one of the following strings: “*PNP0600”, “*PNPC200”,
“*PNP0D00” or “”.

PnP Manager saves a returned string to the CompatibleIDs value of PCMCIA
database.

IRP_MN_QUERY_RESOURCE_REQUIRENMENTS

The PnP Manager sends this IRP when a device is enumerated, prior to
allocating resources to a device, and when a driver reports that its device's
resource requirements have changed. Sometimes (e.g., for PCMCIA memory
cards) bus driver returns NULL resource list for its PDO. So, functional driver
should process this IRP.

IRP_MN_QUERY_BUS_INFORMATION

PCMCIA driver returns PCMCIABus value, when it received this request.

IRP_MN_QUERY_RESOURCES

A bus driver that handles this IRP sets Irp->IoStatus.Information to a pointer to
a CM_RESOURCE_LIST that contains the requested information.

PCMCIA driver returns the STATUS_NOT_SUPPORTED status when it
received this request.

IRP_MN_QUERY_INTERFACE

PnP Manager requests the following interfaces:

GUID_TRANSLATOR_INTERFACE_STANDARD

GUID_BUS_INTERFACE_STANDARD

PCMCIA driver does not support these interfaces.

IRP_MN_START_DEVICE

PCMCIA driver enables the PC card when it receives this request.

APSoft

PC Card Software Development Kit Page 19

PnP Manager saves the address of device to the DeviceReference value in
PCMCIA database.

IRP_MN_QUERY_PNP_DEVICE_STATE

If card is ready to work, driver returns READY value.

IRPs sent to driver when device is removed

If user uses “Unplug or Eject Hardware” applet, PnP Manager sends the:

a) IRP_MN_QUERY_DEVICE_RELATIONS (EjectionRelations)
request to bus PDO device (Pcmcia0 device receives this request,
because it is attached to device stack of PDO device)

b) IRP_MN_QUERY_DEVICE_RELATIONS with
EjectionRelations and then with RemovalRelations type to the child
PDO device

c) IRP_MN_REMOVE_DEVICE request to the child PDO device

PCMCIA does not destroy the PDO device under step c). It receives this request
again when the card is physically removed from socket.

If card was not stopped using the “Unplug or Eject Hardware” applet and user
removes it from socket, PCMCIA receives
IRP_MN_SURPRISE_REMOVAL request (before
IRP_MN_REMOVE_DEVICE).

Surprise removal of device

If you unsafely remove a card, Windows NT sends an
 IRP_MN_SURPROSE_REMOVAL
and then
 IRP_MN_REMOVE_DEVICE
request. IRP_MN_REMOVE_DEVICE request will not be sent if there is an
open handle on PDO, and/or FDO devices are still attached. Other IRPs
processing by driver

Refer to WinNT DDK “IRP_MJ_xx” chapter for information on how to process
non-PnP requests.

APSoft

Page-20 PC Card Software Development Kit

Win9x OSs

VMM Messages and Control Procedure

Every virtual device needs a device control procedure. The VMM calls this
procedure to send the virtual device system control messages. The system
control messages direct the virtual device to carry out actions, such as
initializing itself, and to notify the virtual device of changes to virtual
machines, such as a virtual machine is being created. Most virtual devices
define the device control procedure by using the Begin_Control_Dispatch,
Control_Dispatch, and End_Control_Dispatch macros as in the following
example:

Begin_Control_Dispatch VSAMPLED
 Control_Dispatch Sys_Critical_Init, VSAMPLED_Crit_Init
 Control_Dispatch Device_Init, VSAMPLED_Device_Init
 Control_Dispatch Sys_Critical_Exit, VSAMPLED_Crit_Exit
End_Control_Dispatch VSAMPLED

In this example, the macros create a device control procedure, named
VSAMPLED_Control, and generate instructions that check for the messages
Sys_Critical_Init, Device_Init, and Sys_Critical_Exit. When these messages are
sent to the procedure, the procedure passes control to a corresponding
procedure, such as VSAMPLE_Device_Init, to process the messages. The
virtual device must define these message-processing procedures.

List of messages received by static VxD at boot of system:

 SYS_CRITICAL_INIT

 DEVICE_INIT

 INIT_COMPLETE

 SYS_VM_INIT

 BEGIN_PM_APP

 KERNEL32_INITIALIZED

List of messages received by VxD at restart of system:

 DEVICE_REBOOT_NOTIFY

 DEVICE_REBOOT_NOTIFY2

 CRIT_REBOOT_NOTIFY

 CRIT_REBOOT_NOTIFY2

APSoft

PC Card Software Development Kit Page 21

List of messages received by dynamic VxD at startup:

 SYS_DYNAMIC_DEVICE_INIT

List of messages received by dynamic VxD at unload:

 SYS_DYNAMIC_DEVICE_EXIT

For more information refer to “Device Control procedure” and
“Begin_Control_Dispatch” chapter in Windows 98 DDK help.

Connection to Configuration Manager

When a bus enumerator requests a new device node, the Configuration
Manager locates the device ID of the device node in the system registry and
loads the driver(s) using the registered device loader, if the necessary entries are
present. After loading the device driver, the Configuration Manager sends a
PnP_New_DevNode message to the driver's control procedure.

Note: If the new device node is the result of the "first insertion" event, the
device node is setup during "appy-time." After successful installation of the
device software, the Configuration Manager continues the startup sequence.

On receipt of the PnP_New_DevNode message, the device driver registers a
"Config Handler" procedure with the configuration manager, using the
CONFIGMG_Register_Device_Driver service. The Config Handler
processes all subsequent CONFIG_ type messages from the Configuration
Manager.

Configuration Manager Messages sent to driver when
device is added

CONFIG_FILTER

Sent to direct a driver to process a new device or changes to the configuration.
Enumerators should retrieve the filtered logical configuration for the indicated
device node and modify the requirements as needed. For example, the PCMCIA
driver removes unsupported IRQs and pre-allocates IO port and memory ranges.

Refer to “CONFIG_FILTER” chapter of Windows 98 DDK for more
information

APSoft

Page-22 PC Card Software Development Kit

CONFIG_START

Sent when a configuration has been allocated for the device node. The driver
can retrieve the allocated configuration and begin to use it.

CONFIG_ENUMERATE

Sent to direct a driver to enumerate its immediate children. This message is sent
in response to the insertion or removal of a device. An enumerator should create
a device node for each child by using the CONFIGMG_Create_DevNode
service or remove children by using the CONFIGMG_Remove_SubTree
service as appropriate.

Configuration Manager Messages sent to driver when
device is removed

If user uses PCCARD control to stop device, then CM manager will send
CONFIG_TEST message to request possibility of device stopping. On
physical card removal CM manager will send CONFIG_PREREMOVE,
CONFIG_PREREMOVE2 and CONFIG_REMOVE messages to PnP
dispatcher. The first two messages notify driver, that it should stop using
device’s configuration. The last message notifies driver, that device was
removed.

PnP dispatcher will receive CONFIG_PRESHUTDOWN and
CONFIG_SHUTDOWN when Windows will shutdown.

Other Configuration Manager messages processed by
driver

CONFIG_APM

Sent to notify a driver of a power management event. The driver should
determine the type of event and take appropriate action.

CONFIG_SETUP

Sent to notify the driver that the device node has been setup. The driver should
load additional drivers if possible. For example, the driver could load
appropriate drivers from device ROM, such as for ISA_RTR, PCI and PCMCIA
device.

CONFIG_READY

Sent to notify the driver that the associated device node has been set up.

PC Card Software Development Kit Page 23

6 C H A P T E R

Specific Problems under WinNT OS

Resource Allocation

There are possible resource problems due to the Windows 2000/XP PnP
architecture. The main problem is that some BIOS can’t initialize PCI-2-PCI
bridges properly. If the CardBus adapter is locates behind the PCI-2-PCI Bridge
or the inserted CardBus card is a bridge, then resources, assigned to the
CardBus adapter can be incomplete. For example, resources, assigned to the
CardBus adapter can only cover 256 bytes of I/O space. But if your CardBus
card is a PCI-2-PCI Bridge, then you will need at least 4KB of I/O space. Since
Windows 2000/XP PnP subsystem can’t restart bridges to update resources, you
will not be able to configure your card correctly. On the other hand, your
CardBus adapter can be located behind the PCI-2-PCI Bridge (as on some
modern PC). In such a situation, resources of your card should be allocated
inside of resources of all parents bridges. It can cause additional problems of
resource allocation.

The other problem is the support of legacy resources or VGA resources on
bridges. The ISA enable bit and VGA enable bit are present inside of the PCI
configuration space of the bridge device. s. These bits are responsible for
passing legacy resources through the bridges.

0 84

Example window assigned
to bridge that does not have

the VGA Enable bit set

12 60 64

Figure 2: Allocation for a bridge without VGA child device.

APSoft

Page-24 PC Card Software Development Kit

0 84

Example I/O window
assigned to bridge that has

VGA Enable bit set

12 60 64

Legacy VGA resources (3B0-3BB and
3C0-3DF) are also passed through a
bridge that has VGA Enable bit set.

The aliases of the VGA resources are
also passed through the bridge when

VGA Enable bit is set.

Figure 3: A bridge that has the VGA enable bit set

When the VGA enable bit is set, then the PCI-2-PCI Bridge receives all requests
to the legacy ISA resources (3B0-3BB for VGA monochrome and 3C0-3DF for
VGA color). The enable bit should also force the bridge to pass all 16-bit
aliases of the VGA resources to avoid resource conflicts. Figures 2 and 3
demonstrate the whole I/O space, splitt on the 4KB ranges (as required for
bridge devices). Every 4KB range has several aliases for VGA legacy resources.
Such condition greatly decreases the amount of available I/O space.

0 8 12 60 64

Bridge B
I/O window

ISA Enable bit set to prevent resource conflict

4

ISA Enable bit blocks ISA aliases
from passing through bridge.

Allows VGA to work behind a peer
bridge.

Bridge A
I/O window

Figure 4: A bridge with the ISA enable bit set

The ISA Enable bit prevents conflicts between 16-bit aliases of VGA resources
(and other legacy resources) and PCI-to-PCI bridge windows. When a bridge
has the ISA Enable bit set, 16-bit aliases of 100h – 3FF are blocked from
passing through the bridge.

Figure 4 shows the effect of setting the ISA Enable bit of the bridge (Bridge A).
This blocks ISA aliases from passing through the bridge and prevents conflicts
between bridge A and Bridge B (although it still consumes approximately 75%
of the I/O range allocated to the bridge).

APSoft

PC Card Software Development Kit Page 25

Drive Letters Mounting / Unmounting

Later, in Windows NT OS, you can create a drive letter for your memory
device, by using a symbolic link name for your device name. Under Windows
2000/XP you have the possibility to assign a drive letter, using the standard
component – Mount Manager. MM is responsible for managing volume names.
MM API declared in Windows 2000 DDK’s headers: mountmgr.h and
mountdev.h. To use it from your driver, you should register MM interface via
IoRegisterDeviceInterface call with
MOUNTDEV_MOUNTED_DEVICE_GUID. This component will send 3
requests to the driver:

• IOCTL_MOUNTDEV_QUERY_DEVICE_NAME
(Optional) – driver should return its device name (see
MOUNTDEV_NAME structure).

• IOCTL_MOUNTDEV_QUERY_UNIQUE_ID (Required)
– driver should return symbolic link name, received in
IoRegisterDeviceInterface call (see
MOUNTDEV_UNIQUE_ID structure).

• IOCTL_MOUNTDEV_QUERY_SUGGESTED_LINK_NA
ME (Optional) – driver should suggested link name (see
MOUNTDEV_SUGGESTED_LINK_NAME structure).

MM internally checks the possibility of suggested assigned link name to device
and will use this link, if it’s possible and registry database
(HKLM\SYSTEM\MountedDevices) doesn’t have a record for the device.
Otherwise, MM will use available drive letter or drive letter, which presents in
database.

How WinNT OS Sees CardBus Adapters

If the CardBus adapter has more then one socket, Windows NT works with
each socket as if they were different adapters.

CardBus cards support

If your adapter is a CardBus adapter, then it supports CardBus cards. Since the
CardBus interface is physically and logically compatible with the PCI interface,
the PCMCIA driver simply creates a new PCI bus, using the PCI bus driver
interfaces, and redirects all the card’s requests to the PCI driver. For CardBus
cards the PCMCIA driver doesn’t try to locate CIS, since the PCI driver simply
recognizes the card, using the PCI configuration space of the card.

APSoft

Page-26 PC Card Software Development Kit

This page is intentionally blank

PC Card Software Development Kit Page 27

7 C H A P T E R

Specific Procedures Illustrated in
Samples

WinNT OS

WinNT sample builds functional (FUNCDRV.SYS) and filter (FLTDRV.SYS)
drivers for a memory card and application, which are able to communicate with
a functional driver by sending I/O control requests.

Filter Driver

This driver creates and attaches a filter device. It forwards all IRP requests to
the lower device, except a Filter Resource requirements request. The handler of
filter resource requirements request forwards IRP to lower device (functional
driver), then modifies Alignment and Length of memory resource descriptor.

Function Driver

The driver creates a device object and attaches it to the PDO device. It forwards
all IRP requests to the lower device, except a Filter Resource requirements
request.

• Handler of filter resource requirements request forwards IRP to
lower device (PCMCIA driver), then replaces Resource
Requirements list to request 8KB memory window.

• Handler of start device request saves address of assigned 8KB
window in a member variable.

It also contains simple implementation of IRP_MJ_READ and
IRP_MJ_WRITE requests.

Application

The application displays a dialog box that asks the user to select one of the
following actions: Query ID (synchronous), Query ID (asynchronous) or Get
Version. When an action is selected, the application sends device I/O control to
the function driver and displays returned data in the edit box control.

APSoft

Page-28 PC Card Software Development Kit

Bulk

This client application monitors all card insertion/removal events from
“CardWare 7.0 Memory Cards" driver. If Memory card is inserted (SRAM,
FLASH, ATA), first 512 bytes of first memory region will be printed in order to
demonstrate usage of the driver memory services.

Source Description

Win2K\Driver directory contains implementation of base classes for PnP
drivers.

PnPDrv.h Definition of CPnpDriver class.

PnPDrv.cpp Implementation of EntryPoint, DriverUnload and
CPnPDriver class

PnPDev.h Definition of CPnPDevice class

PnPDev.cpp Implementation of CPnPDevice class.

PnPMn.cpp Default PnP request handlers

Utils.cpp Set of functions for operating with Unicode
string and sending PnP requests to a driver

Deb_Res.cpp Functions for tracing resource lists

Win2K\Driver\Filter directory contains source of FLTDRV.SYS driver.

DrvClass.h Definition of CFltDriver class derivative from
CPnpDriver class.

DrvClass.cpp Implementation of CFltDriver class. Overloaded
method of CPnpDriver class –OnAddDevice -
creates object of CFltDevice class

DevClass.h Definition of CFltDevice class derivative from
CPnpDevice class.

DevClass.cpp Implementation of CFltDevice class.
OnFilterResReq method modifies memory
descriptor of resource requirements list.

Win2K\Driver\Function directory contains source of FUNCDRV.SYS driver.

APSoft

PC Card Software Development Kit Page 29

DrvClass.h Definition of CFuncDriver class derivative from
CPnpDriver class.

DrvClass.cpp Implementation of CFuncDevice class.
Overloaded method of CPnpDriver class –
OnAddDevice - creates object of CFltDevice
class

DevClass.h Definition of CFuncDevice class derivative from
CPnpDevice class.

DevClass.cpp Implementation of CFuncDevice class.
OnFilterResReq method replaces resource
requirements list.

DevIoctl.cpp Implementation of I/O control handlers

Win9x OS

This is a sample of a generic PCMCIA card driver with Card Services support
and communication application.

The Configuration Manager loads the driver when it detects an insertion of a
card described in the INF file. The driver registers its self as a client of the card
Services and waits for PnP_New_DevNode notification. After notification if
received, the driver registers the configuration handler. CONFIG_START
handler starts the adapter.

APSoft

Page-30 PC Card Software Development Kit

Source Description

Startup.asm VxD Control procedure

Main.cpp, Main.h, Vxdmap.h,
Vxdmap.cpp

Processing of VMM notifications

PnPDisp.cpp Processing of Configuration Manager
messages

Filer.h, Filer.asm, Filer.inc Access to Disk files

Registry.cpp Access to registry

Cs.h, Cs.cpp, Pcmcia.cpp Access to card Services API

Heap.cpp Heap management

Error.cpp Error output

Win32api.cpp Win32API for applications

Wrapper.asm Real mode wrappers

PC Card Software Development Kit Page 31

8 C H A P T E R

CardWare 7.0 Card Services API
Card Services coordinates access to PC Cards, sockets and system resources
among multiple clients. These clients may be resident or transient device
drivers, system utilities, or application programs.

Card Services preserves for its clients an abstract, socket-hardware-
implementation independent view of a card and its resources. Card Services
presents the same tuple organizational and resource allocation view to all of its
clients whether the card is a 16-bit PC Card or a CardBus PC Card.

CardWare 7.0 provides Card Services level 2.10 under Windows 98/ME and
Card Services level 5.02 under Windows 2000/XP.

See below table with list of supported functions under Windows 98/ME and
Windows 200/XP.

Function Win98/ME Win2K/XP
Name PCMCIA 2.10 PCMCIA 5.02

00 CS_CLOSEMEM + +
01 CS_COPYMEM + +
02 CS_DEREGCLIENT + +
03 CS_GETCLIENTINFO + +
04 CS_GETCONFIGINFO + +
05 CS_GETFIRSTPART + +
06 CS_GETFIRSTREGION + +
07 CS_GETFIRSTTUPLE + +
08 CS_GETNEXTPART + +
09 CS_GETNEXTREGION + +
0A CS_GETNEXTTUPLE + +
0B CS_GETCSINFO + +
0C CS_GETSTATUS + +
0D CS_GETTUPLEDATA + +
0E CS_GETFIRSTCLIENT + +
0F CS_REGERASEQ + +
10 CS_REGCLIENT + +
11 CS_RESETCARD + +
12 CS_MAPLOGSKT + +
13 CS_MAPLOGWND + +

APSoft

Page-32 PC Card Software Development Kit

14 CS_MAPMEMPAGE + -
15 CS_MAPPHYSKT + +
16 CS_MAPPHYWND + +
17 CS_MODIFYWND + -
18 CS_OPENMEM + +
19 CS_READMEM + +
1A CS_REGMTD + (Only for VxD) +
1B CS_RELEASEIO + (Only for VxD) -
1C CS_RELEASEIRQ + (Only for VxD) -
1D CS_RELEASEMEM + (Only for VxD) -
1E CS_RELEASECONFIG + (Only for VxD) -
1F CS_REQUESTIO + (Only for VxD) -
20 CS_REQUESTIRQ + (Only for VxD) -
21 CS_REQUESTMEM + (Only for VxD) -
22 CS_REQUESTSKTMSK + +
23 CS_RETSSENTRY + +
24 CS_WRITEMEM + +
25 CS_DEREGERASEQ + +
26 CS_CHECKERASEQ + +
27 CS_MODIFYCONFIG + (Only for VxD) -
28 CS_REGTIMER + +
29 CS_SETREGION + +
2A CS_GETNEXTCLIENT + +
2B CS_VALIDATECIS + +
2C CS_REQUESTEXCL + +
2D CS_RELEASEEXCL + +
2E CS_GETEVENTMSK + +
2F CS_RELEASESKTMSK + +
30 CS_REQUESTCONFIG + (Only for VxD) -
31 CS_SETEVENTMSK + +
32 CS_ADDSS + (Only for VxD) +
33 CS_REPLACESS + (Only for VxD) +
34 CS_VENDORSPECIFIC + +

35 CS_ADJUSTRESINFO - -
36 CS_ACCESSCONFIGREG + +
37 CS_GETFIRSTWINDOW + +
38 CS_GETNEXTWINDOW + +
39 CS_GETMEMPAGE - +
3A CS_REQUESTDMA - -
3B CS_RELEASEDMA - -
3C CS_CONFIGURE_FUNCTI

ON
- -

APSoft

PC Card Software Development Kit Page 33

3D CS_INQUIRE_CONFIGUR
ATION

- -

See below table with list of supported client callback events

Event Win98/ME Win2K/XP
Name

01 BATTERY_DEAD + -
02 BATTERY_LOW + -
03 CARD_LOCK + -
04 CARD_READY + -
05 CARD_REMOVAL + +
06 CARD_UNLOCK + -
07 EJECTION_COMPLETE - -
08 EJECTION_REQUEST - -
09 INSERTION_COMPLETE - -
0A INSERTION_REQUEST - -
0B PM_RESUME - -
0C PM_SUSPEND - -
0D EXCLUSIVE_COMPLETE + +
0E EXCLUSIVE_REQUEST + +
0F RESET_PHYSICAL + +
10 RESET_REQUEST + +
11 CARD_RESET + +
12 CS_EV_MTD_REQUEST + +
14 CLIENT_INFO + +
15 TIMER_EXPIRED + +
16 SS_UPDATED + +
17 WRITE_PROTECT + -
18 REQUEST_ATTENTION - -
40 CARD_INSERTION + +
80 RESET_COMPLETE + -
81 ERASE_COMPLETE + +
82 REGISTRATION_COMPLETE + +
F0 POST_COMPLETE - -
F1 PWR_CONSUMPTION_CHANGE - -
F2 CS_EV_MTD_REQUEST_SEC + +

Bulk Memory Services provide services that can be used by clients such as file
system utilities or XIP install utilities to avoid dealing with all the details of
the various memory technologies that can be present on PC Cards. These

services support a simple Open/CloseMemory and Read/Write/CopyMemory
model of memory access. This model is similar to open, close, read, and write
access to files in most operating systems.

Bulk memory
services

APSoft

Page-34 PC Card Software Development Kit

Card Services determines PC Card memory regions during card insertion
processing. Clients may determine areas in PC Card memory they wish to
access by parsing the CIS or using the Card Services’ services.
GetFirst/NextTuple, GetFirst/NextPartition, or GetFirst/NextRegion. Once a
client determines the area of the PC Card they wish to access, they use the
OpenMemory request and specify the absolute offset on the PC Card where the
area begins.

OpenMemory returns a memory handle that is used for all subsequent read,
write, copy and erase operations. These operations specify the location to be
accessed relative to the start of the opened memory area. This allows clients to
move data to and from PC Card memory as desired without concern as to where
on the PC Card this particular memory area lies. A client performs a
CloseMemory request to inform Card Services that it will no longer be
accessing a memory area.

Performing an erase operation differs from the read, write and copy services. A
client that needs to erase memory must register an erase queue with the
RegisterEraseQueue request. The client then fills an erase queue entry
identifying the socket and region of memory to erase. Next, the
CheckEraseQueue request is used to notify Card Services that one or more
erase requests have been made in the erase queue. The actual erase operation is
performed asynchronously. When the erase operation completes, the client is
notified through the callback entry point provided in the erase queue header. In
comparison, the read, write, and copy services return only after the requested
action has been completed.

A client must use DeregisterEraseQueue to request Card Services to relinquish
control of an erase queue. This must be invoked before a client is removed from
memory. DeregisterEraseQueue can only be used when there are no queued
erase requests in the erase queue.

Since erase operations return before the erase is complete, the client may be
able to access other services while waiting for the erase completion. The
physical construction of some cards (or memory components) may prevent
some services until the erase operation in progress has been completed. In this
event, the other requested operation is blocked (delayed) within Card Services
until the erase is completed. Card Services does not notify the requester of erase
completion until the blocked request is complete.

Description of samples using Bulk Memory services can be found in CWSDK
document.

PC Card Software Development Kit Page 35

A A P P E N D I X

Native memory cards support API of
CardWare 7.0
In addition to Card Services interface CardWare 7.0 for Windows 2000/XP
provides an API (native) allowing to software developer write his own
applications exploring memory cards.

Driver programming interface

Include files description:

..\Src\Inc\CWMEM2K.h All IOCTL codes and corresponding structures

Driver’s control device, which actually receives all IOCTLs, is named
“CWMEM2K”.

Below you can see an example of calling IOCTL_FLASH2K_GETVERSION:

HANDLE h;
BOOL fSuccess;

h = CreateFile(“\\\\.\\CWMEM2K”, 0,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL, OPEN_EXISTING, 0, NULL);

Check driver version
fSuccess = DeviceIoControl(h, IOCTL_FLASH2K_GETVERSION, NULL,
0,
 &dwVersion, sizeof(dwVersion),
 NULL);

if (!fSuccess)
{
 // Error handling

APSoft

Page-36 PC Card Software Development Kit

}
else
{
 // Analyze version info
}

Informational functions

IOCTL_FLASH2K_GETVERSION

Operation: Returns driver version

Input: Not used

Output: DWORD

Comment: Returns four bytes of driver version. First byte – major
version, second byte – minor version. Third and fourth bytes –
build number

IOCTL_FLASH2K_GET_SOCKET_MASK

Operation: Retrieves information about sockets/cards in the sockets

Input: Not used

Output: FLASH2K_SOCKET_MASK structure

Comment: Returns mask of sockets in dwMask member and mask of
sockets with inserted flash cards in dwFlashMask member.
Client application of CWMEM2K can send this request
periodically to detect card insertion/removal.

APSoft

PC Card Software Development Kit Page 37

IOCTL_FLASH2K_GET_SOCKET_INFO

Operation: Retrieves socket information, like CIS information, type of
media in the socket, etc

Input: FLASH2K_IOCTL structure. Following fields must be filled
out before send the IOCTL: bDrive or wSocket and fSkt. If
fSkt is set to BOOL_TRUE, CWMEM2K wSocket value.

Output: SKT_INFO structure

Comment: Returns information about type of inserted card and card CIS

IOCTL_FLASH2K_IDENTIFY_CARD

Operation: Returns card identification information

Input: FLASH2K_IOCTL structure. Following fields must be filled
out before send the IOCTL: bDrive or wSocket and fSkt. If
fSkt is set to BOOL_TRUE, CWMEM2K wSocket value.

Output: Buffer with card identification information, depended on card
type: FLASH2K_IDENTIFY_INFO (Flash card) or
SRAM_IDENTIFY_INFO (SRAM card), or
ATA_IDENTIFY_INFO (ATA card).

Comment: Returning information includes power information and
description of partitions. Type of returning structure depends
from type of inserted card.

IOCTL_FLASH2K_GET_MEDIA_INFO

Operation: Returns general card information

Input: FLASH2K_MEDIAINFO structure. Following fields must be
filled out before send the IOCTL: bDrive or wSocket and fSkt

Output: FLASH2K_MEDIAINFO structure

Comment: Returns information about media size, status, JEDEC ID

APSoft

Page-38 PC Card Software Development Kit

IOCTL_FLASH2K_GET_STATUS

Operation: Returns card status

Input: FLASH2K_CARDSTATUS structure. Following fields must
be filled out before send the IOCTL: bDrive or wSocket and
fSkt

Output: FLASH2K_CARDSTATUS structure. Only one status value is
now supported - CS_WRITE_PROTECT

Comment: Returns status: 0 (READY) or CS_WRITE_PROTECT

IOCTL_FLASH2K_DEV_INSTANCE

Operation: Retrieves whole device instance name for the card inserted in
the specified socket

Input: FLASH2K_IOCTL structure. Following fields must be filled
out before send the IOCTL: bDrive or wSocket and fSkt

Output: WCHAR array

Comment: Returns Unicode string with whole device instance name that
can be used to retrieve device node via
CM_Locate_DevNode(). Device node normally is used in all
CM_xxx routines

CIS access functions

CWMEM2K contains code, which allows it to parse CIS on memory cards to
locate some information (like device description, configuration information,
etc.). The same code can be used to enumerate tuples in CIS.

Please, remember, that CWMEM2K doesn’t validate CIS before parsing it. So,
tuple data can be invalid.

To give possibility of CIS enumerating, CWMEM2K provides 3 IOCTLs.

APSoft

PC Card Software Development Kit Page 39

IOCTL_FLASH2K_GET_FIRST_TUPLE

Operation: IOCTL receives GFNTARGS structure and returns the same
structure

Input: GFNTARGS structure, HlogSkt field - Logical socket number
(0, 1, etc.)

Output: GFNTARGS structure

Comment: Returns TupleCode field - Code of the first tuple in CIS.
TupleLink field - Link value of the first tuple in CIS.

IOCTL_FLASH2K_GET_NEXT_TUPLE

Operation: IOCTL receives GFNTARGS structure and returns the same
structure

Input: GFNTARGS structure, HlogSkt field - Logical socket number
(0, 1, etc.). CIS field - Current CIS pointer. You should use
the same structure for all GET_FIRST / GET_NEXT /
GET_DATA iterations to have correct CIS pointer. NEVER
CHANGE THIS VALUE MANUALLY!

Output: GFNTARGS structure

Comment: Returns TupleCode field - Code of the first tuple in CIS.
TupleLink field – Link value of the first tuple in CIS.

IOCTL_FLASH2K_GET_TUPLE_DATA

Operation: IOCTL receives GTDARGS structure and returns the same
structure

Input: GFNTARGS structure, HlogSkt field - Logical socket number
(0, 1, etc.). DataMax - Size of TupleData field CIS field -
Current CIS pointer (see notes for previous IOCTL)

Output: GFNTARGS structure

Comment: Returns DataLen field - The whole size of tuple body.
TupleData field - Tuple data (should be correctly allocated
and DataMax field should be initialized)

APSoft

Page-40 PC Card Software Development Kit

Raw card access

IOCTL_FLASH2K_READ_MEMORY

Operation: Reads specified amount of bytes from specified offset on the
card

Input: FLASH2K_READ structure and buffer for data. Following
fields must be filled out before send the IOCTL: bDrive or
wSocket and fSkt, dwOffset and dwLength

Output: Copy of card’s memory, read from specified offset on the card.

Comment: Size of buffer must be same or greater than specified in the
dwLength field of FLASH2K_READ.

IOCTL_FLASH2K_WRITE_MEMORY

Operation: Writes specified amount of bytes to the specified offset on the
card

Input: FLASH2K_WRITE structure, buffer with data to write.
Following fields must be filled out before send the IOCTL:
bDrive or wSocket and fSkt, dwOffset and dwLength

Output: None

Comment: Size of buffer must be the same or greater than specified in
dwLength field of FLASH2K_WRITE.

IOCTL_FLASH2K_FTL_SUPPORT

Operation: Switches on/off FTL support for raw read/write operations

Input: BOOL. TRUE – to turn FTL support ON, FALSE – to turn it
OFF.

Output: Not used.

Comment: Supported only for FLASH cards.

APSoft

PC Card Software Development Kit Page 41

Card Erase support

CWMEM2K implements fast erasing scheme, which gives possibility to greatly
decrease time of FLASH card erasing. The main idea is write erase command to
the several erase blocks simultaneously and then check erase status on all
blocks in the cycle. But it was found, that FLASH card can remove RDY signal
for short time immediately after writing erase command to the block and
writing erase command to the other block cause to increase interval till RDY
signal assertion. It cause PCMCIA.SYS driver to freeze PC on several seconds.

By this reason, CWMEM2K driver waits for RDY signal after writing erase
command to the first block and before writing to the next block. RDY signal
waiting works, using either internal PCMCIA.SYS call, or manually via sockets
registers. In the first case we need to know address of such call and in the
second case we need to know base address of registers. All these information
can be retrieved from device extension of PDO (card) or FDO (socket).

Card erase algorithm:

1. Send IOCTL_FLASH2K_TEST_FAST_ERASE to check if fast
erase algorithm is supported

2. Send IOCTL_FLASH2K_GET_MEDIA_INFO to retrieve size of
card and erase block.

3. If no, send IOCTL_FLASH2K_ERASE_BLOCK request for each
block (0, 1, …, dwCardSize / dwEraseBlockSize).

4. If yes, send IOCTL_FLASH2K_ERASE_CARD request. Send
IOCTL_FLASH2K_ERASE_STATUS request in a loop. Break loop
when status of each block (0, 1, …, dwCardSize / wEraseBlockSize)
becomes equal to ERBLK_COMPLETE

IOCTL_FLASH2K_TEST_FAST_ERASE

Operation: Test if fast erase algorithm is supported.

Input: Not used.

Output: BOOL. TRUE means that ‘known’ version of PCMCIA.SYS
is used and fast erase algorithm is supported.

Comment: Supported only for FLASH cards.

APSoft

Page-42 PC Card Software Development Kit

IOCTL_FLASH2K_ERASE_CARD

Operation: Erases whole card using fast erase algorithm.

Input: FLASH2K_IOCTL structure. Following fields must be filled
out before send the IOCTL: fSkt, bDrive or wSocket

Output: BOOL. TRUE indicates that operation succeeds

Comment: Supported only for FLASH cards.

IOCTL_FLASH2K_ERASE_STATUS

Operation: Returns erase status for each erase block on the card.

Input: FLASH2K_IOCTL structure. Following fields must be filled
out before send the IOCTL: fSkt, bDrive or wSocket.

Output: Array of bytes. Size of array (in bytes) must be equal number
of erase blocks on the card. Each byte of the buffer contains
erase status of corresponding erase block. The following erase
status codes are supported: ERBLK_NOT_PROCESSED,
ERBLK_IN_PROGRESS, ERBLK_FAILED,
ERBLK_SUCCESS, ERBLK_COMPLETE.

Comment: Supported only for FLASH cards.

IOCTL_FLASH2K_ERASE_INT

Operation: Interrupts card erase.

Input: FLASH2K_IOCTL structure. Following fields must be filled
out before send the IOCTL: fSkt, bDrive or wSocket.

Output: Not used.

Comment: Supported only for FLASH cards.

APSoft

PC Card Software Development Kit Page 43

IOCTL_FLASH2K_ERASE_BLOCK

Operation: Erases one block on FLASH card.

Input: FLASH2K_ERASEBLOCK structure. Following fields must
be filled out before send the IOCTL: fSkt, bDrive or wSocket,
dwOffset, dwSize.

Output: FLASH2K_ERASEBLOCK structure.

Comment: Supported only for FLASH cards.

IOCTL_FLASH2K_CHECK_ERASE_BLOCK

Operation: Checks if block is fully erased

Input: FLASH2K_CHECKERASE structure. Following fields must
be filled out before send the IOCTL: fSkt, bDrive or wSocket,
dwMask, dwOffset. dwMask contains 0x0 or 0xFFFFFFFF
depending on card type – on some FLASH cards erased blocks
contains 0, on some – FF.

Output: FLASH2K_CHECKERASE structure.

Comment: Supported only for FLASH cards.

Utility functions

IOCTL_FLASH2K_RESET_SOCKET

Operation: Resets socket.

Input: FLASH2K_IOCTL structure. Following fields must be filled
out before send the IOCTL: fSkt, bDrive or wSocket.

Output: BOOL. TRUE indicates that operation succeeds.

Comment: Initiates soft reset of socket

CUSTOMER LICENSE AGREEMENT

APSoft thanks you for selecting one of our products for your computer. This is the APSoft Customer License
Agreement, which describes APSoft 's license terms. After reading this license agreement, please complete and
submit either the electronic or printed Registration Card.

- PLEASE READ THIS NOTICE CAREFULLY -
DO NOT USE THE SOFTWARE UNTIL YOU HAVE READ THE LICENSE AGREEMENT. BY
CHOOSING TO USE THIS SOFTWARE, YOU HAVE AGREED TO BE BOUND BY THIS STANDARD
AGREEMENT. IF YOU DO NOT ACCEPT THE TERMS OF THIS LICENSE, YOU MUST REMOVE
ALL OF THE SOFTWARE FROM YOUR COMPUTER AND DESTROY ANY COPIES OF THE
SOFTWARE OR RETURN THE PACKAGE UNUSED TO THE PARTY FROM WHOM YOU RECEIVED
IT.
Grant of License. APSoft grants to you and you accept a license to use the programs and related materials
("Software") delivered with this License Agreement. This Software is a single licensed version for use on one
computer at a time. It is not to be used in a factory, production or repair environment and neither can its
components be separated. The software is not to be installed on or accessed through a network. The software should
not be installed on more than one computer. If you use the Software on more than one computer at a time, you must
license additional copies or request a multi-user license from APSoft. You agree that you will not transfer or
sublicense these rights.
Term. This License Agreement is effective from the day you receive the Software, and continues until you return
the original magnetic media and all copies of the Software to APSoft. APSoft e shall have the right to terminate this
license if you violate any of its provisions. APSoft or its licensors own all right, title, and interest including all
worldwide copyrights, in the Software and all copies of the Software.
Your Agreement. You agree not to transfer the Software in any form to any party without the prior written consent
of APSoft. You further agree not to copy the Software in whole or in part unless APSoft consents in writing. You
will use your best efforts and take all reasonable steps to protect the Software from unauthorized reproduction,
publication, disclosure, or distribution, and you agree not to disassemble, decompile, reverse engineer, or transmit
the Software in any form or by any means. You understand that the unauthorized reproduction of the Software
and/or transfer of any copy may be a serious crime, as well as subjecting you to damages and attorney fees.
Copyright: The Software and accompanying documentation is protected by copyright laws, international copyright
treaties, as well as other intellectual property laws and treaties. You may not copy the program or the documentation.
All copies are in violation of this Agreement.
Disclaimer. APSOFT MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, AND
APSOFT SHALL NOT BE LIABLE FOR TORT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES
SUCH AS LOSS OF PROFITS OR LOSS OF GOODWILL FROM THE USE OR INABILITY TO USE THE
SOFTWARE FOR ANY PURPOSE. SOME STATES MAY NOT ALLOW THIS DISCLAIMER SO THIS
LANGUAGE MAY NOT APPLY TO YOU. IN SUCH CASE, OUR LIABILITY SHALL BE LIMITED TO THE
PRICE YOU PAID FOR THE SOFTWARE.
Updates. APSoft will do its best to notify you of subsequent updates released to the public or major corrections and
the price for which they may be obtained, PROVIDED YOU HAVE SENT IN YOUR REGISTRATION CARD OR
REGISTERED ON-LINE. All updates, and corrections which are provided to you, shall become part of the
Software and be governed by the terms of this license agreement.
Miscellaneous. This is the only agreement between you and APSoft, and it cannot and shall not be modified by
purchase orders, advertising, or other representations of anyone, unless a written amendment has been signed by one
of our company officers. This License Agreement is governed under German law.

Acknowledgement: YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND
IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS
SUPERCEEDES ALL PROPOSALS OR PRIOR AGREEMENTS, VERBAL OR WRITTEN, AND ANY OTHER
COMMUNICATIONS BETWEEN THE PARTIES RELATING TO THE SUBJECT MATTER OF THIS
AGREEMENT.

	Introduction
	Installation of PCMCIA Drivers
	PnP Device Installation Issues
	What is a Plug & Play ID?

	Hardware Key for PCMCIA Cards
	Device ID Generation Method
	Instance ID Generation
	Device Key

	Loading Driver
	Loading by PnP Manager
	WinNT OS
	Win9x OS

	Static and Dynamic Loading of Driver
	WinNT OS
	Win9x OS

	Driver Operation
	WinNT OSs
	Win9x OSs

	Specific Problems under WinNT OS
	Resource Allocation
	Drive Letters Mounting / Unmounting
	How WinNT OS Sees CardBus Adapters

	Specific Procedures Illustrated in Samples
	WinNT OS
	Win9x OS

	CardWare 7.0 Card Services API
	Bulk memory services

	Native memory cards support API of CardWare 7.0
	Driver programming interface
	Informational functions
	CIS access functions
	Raw card access
	Card Erase support
	Utility functions

